
LECTURE 2LECTURE – 2

SYSTEM PROGRAMMING & SYSTEM
ADMINISTRATION

SECTION -A

INTRODUCTIONINTRODUCTION

SubroutinesSubroutines
Macros
Li kLinkers
Loaders

SUBROUTINE DEFINITION:SUBROUTINE DEFINITION:

A subroutine is a body of computer instructions

designed to be used by other routines to accomplish a

tasktask.

In computer science, a subroutine (also called

procedure, method, function, or routine) is a portion

of code within a larger program that performs a specificof code within a larger program that performs a specific

task and is relatively independent of the remaining

dcode.

TWO TYPES OF SUBROUTINES ARE THERE :

Closed & Open Subroutines.
An open subroutine or macro definition is one whose code is p
inserted into the main program (flow continues).
Thus if same open subroutine were called four times, it
would appear in four different places in the calling programwould appear in four different places in the calling program.
Closed Subroutine:
A closed subroutine can also be stored outside the mainA closed subroutine can also be stored outside the main
routine, and control transfers to the subroutine.
Associated with the closed subroutine are the two tasks the
main program must performs:
transfer of control
transfer of data# transfer of data.

The task of adjusting programs so they maybe placed
in arbitrary memory locations is called relocation.y y
Relocating loaders perform four functions:

1. Allocate space in memory for the programs (allocation).
2 Resolve symbolic references between objects decks2. Resolve symbolic references between objects decks

(linking).
3. Adjust all address dependent locations, such as address j p ,

constants, to correspond to the allocated space.
4. Physically place the machine instructions and data into

memory.

The period of execution of user’s program is
called execution time

The period of translating a user’s sourceThe period of translating a user s source
program is called assembly or compile time.

Load time refers to the period of loading and
preparing an object program for executionpreparing an object program for execution.

MacrosMacros
To relieve programmers of the need to repeat identical parts

of their program, operating systems provide a macro

processing facility, which permits the programmer to define

an abbreviation for a part of his program and to use the p p g

abbreviation in his program.

The macro processor treats the identical parts of the programThe macro processor treats the identical parts of the program

defined by the abbreviation as “macro definition” and saves

the definitionthe definition.

The macro processor substitutes the definition for all

occurrences of the abbreviation (macro call) in the program.

In addition to helping programmers abbreviate their
programs, macro facilities have been used as general text
h dl d f i li i ti t t i di id lhandlers and for specializing operating systems to individual
computer installations.
In specializing operating systems (system generation), the p g p g y (y g),
entire operating system is written as a series of macro
definitions.
T i li th ti t i f llTo specialize the operating system, a series of macro calls
are written.
These are processed by the macro processor byThese are processed by the macro processor by
substituting the appropriate definitions, thereby producing all
the programs for an operating system.

Implicit & Explicit execution in terms of Interpreters
Explicit execution in case of Interpreters: :- java program :-Helloworld.java.

We’ll compile it with java compiler i.e. (javac.exe file will run… as it’s an
executable file)executable file…)

javac Helloworld.java
Source code is converted into bytecode (java.exe file will run…)

java Helloworld.java
This byte code is interpreted by java-runtime environment and this is explicitly
done by Interpreter… (we need some kind of environment like JRE explicitly to
execute our java programs….)

Implicit execution in case of compilers:-
C programs are implicitly executed by compiler as they are simply compiled andC programs are implicitly executed by compiler as they are simply compiled and
executed

There’s no need of interpreters or some other environment to execute the
i t ti th t’ h l i i li it tiinstructions…that’s why we cal in implicit execution..

LinkerLinker
Also called link editor and binder, a linker is a program
that combines object modules to form an executablethat combines object modules to form an executable
program.

M i l ll t itMany programming languages allow you to write
different pieces of code, called modules, separately.

This simplifies the programming task because you can
break a large program into small, more manageable

ipieces.

Eventually, though, you need to put all the modules
together. This is the job of the linker.

Compilers and assemblers create object files containing the generated binary
code and data for a source file.

A ``program library'' is simply a file containing compiled code (and data) that is to beA program library is simply a file containing compiled code (and data) that is to be
incorporated later into a program; program libraries allow programs to be faster to
recompile, and easier to update.

Basic doubts of studentsBasic doubts of students
Static and dynamic linking
linkers in detaillinkers in detail
Implicit and explicit execution
Program generators examples.g g p
Translation Hierarchy where to place interpreters in the
diagram.

(In the diagram of translation hierarchy we are considering an
example of C program.. And C programs are only compiledexample of C program.. And C programs are only compiled
and executed there’s no requirement of interpreters in C
programming…they are needed in case of Java
programming)programming)

Static linking
A compiler can generate static or dynamic code dependingA compiler can generate static or dynamic code depending
upon how you proceed with the linking process.

If you create static object code (we call it static because theyIf you create static object code (we call it static because they
exist through out the program execution), the output files are
larger but they can be used as independent binary files .

This means that you can copy an executable file to another
system and It does not depend on shared libraries when it is
executed.
(Shared libraries are libraries that are loaded by programs when they start. When a
shared library is installed properly, all programs that start afterwards automatically
use the new shared library.)use the new shared library.)
Dynamic object Code: It is often useful to create objects dynamically as well. The main
reason you'd want to create an object dynamically, rather than define it statically, is that
you don't know in advance that you'll need the object at all - or, more typically, you don't
know exactly how many instances of the object you'll need.

Dynamic linkingDynamic linking

if you chose dynamic linking, the final executable code
is much smaller but it depends heavily upon sharedis much smaller but it depends heavily upon shared
libraries. If you copy the final executable program to
another system you have to make sure that the sharedanother system, you have to make sure that the shared
libraries are also present on the system where your
application is executed.

APPLICATIONSAPPLICATIONS

Evaluation order
Macro systems have a range of uses Being able to choose theMacro systems have a range of uses. Being able to choose the
order of evaluation (see lazy evaluation and non-strict functions)
enables the creation of new syntactic constructs (e.g control

structures) indistinguishable from those built into the language. For
instance, in a Lisp dialect that has cond but lacks if, it is possible to s a ce, a sp d a ec a as co d bu ac s , s poss b e o
define the latter in terms of the former using macros. For example,
Scheme has both continuations and hygienic macros, which enables a
programmer to design their own control abstractions, such as

looping and early exit constructs, without the need to build them
into the languageinto the language.

Data sub-languages and domain-specific languages
Next, macros make it possible to define data languages that are
immediately compiled into code, which means that constructs such
t t hi b i l t d i th t i b th t l das state machines can be implemented in a way that is both natural and

efficient.
Binding constructs

Macros can also be used to introduce new binding constructs. The
t ll k l i th t f ti f l t i t thmost well-known example is the transformation of let into the

application of a function to a set of arguments.

SCOPE OF RESEARCHSCOPE OF RESEARCH
The linker actually enables separate compilation. As shown in Figure , an
executable can be made up of a number of source files which can be

il d d bl d i t th i bj t fil ti l i d d tlcompiled and assembled into their object files respectively, independently.

